翻訳と辞書
Words near each other
・ Symmetric group
・ Symmetric Hash Join
・ Symmetric hydrogen bond
・ Symmetric hypergraph theorem
・ Symmetric in Design
・ Symmetric inverse semigroup
・ Symmetric level-index arithmetic
・ Symmetric matrix
・ Symmetric mean absolute percentage error
・ Symmetric monoidal category
・ Symmetric multiprocessing
・ Symmetric multiprocessor system
・ Symmetric obstruction theory
・ Symmetric Phase Recording
・ Symmetric polynomial
Symmetric probability distribution
・ Symmetric product
・ Symmetric product of an algebraic curve
・ Symmetric rank-one
・ Symmetric relation
・ Symmetric scale
・ Symmetric set
・ Symmetric space
・ Symmetric space (disambiguation)
・ Symmetric spectrum
・ Symmetric successive overrelaxation
・ Symmetric tensor
・ Symmetric Turing machine
・ Symmetric variety
・ Symmetric-key algorithm


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Symmetric probability distribution : ウィキペディア英語版
Symmetric probability distribution

In statistics, a symmetric probability distribution is a probability distribution—an assignment of probabilities to possible occurrences—which is unchanged when its probability density function or probability mass function is reflected around a vertical line at some value of the random variable represented by the distribution. This vertical line is the line of symmetry of the distribution. Thus the probability of being any given distance on one side of the value about which symmetry occurs is the same as the probability of being the same distance on the other side of that value.
==Formal definition==

A probability distribution is said to be symmetric if and only if there exists a value x_0 such that
: f(x_0-\delta) = f(x_0+\delta) for all real numbers \delta ,
where ''f'' is the probability density function if the distribution is continuous or the probability mass function if the distribution is discrete.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Symmetric probability distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.